An Implicit Surface Modeling Technique Based on a Modular Neural Network Architecture
نویسنده
چکیده
Independently from artificial intelligence applications, an artificial neural network can be viewed as a powerful tool for function reconstruction. Previous papers used this property to model an implicit surface out of some control points by reconstructing its underlying scalar field. Such an approach requests the neural network to memorize the control points, which has turned problematic for complex surfaces. In our paper, we show that this problem can be efficiently tackled by adapting the architecture of the neural network to the features compounding the surface: by learning first these features independently and then blending them gradually together, our modular architecture readily comprehends the whole surface. As an example, we model the surface of an animated human body. This approach could eventually help model 3-D textures and be used as well for more classic applications of neural networks.
منابع مشابه
Artificial Neural Network Modeling for the Management of Oil Slick Transport in the Marine Environments
Due to an increase in demand of petroleum products which are transported by vessels or exported by pipelines, oil spill management becomes a controversial issue in coastal environment safety as well as making serious financial problems. After spilling oil in the water body, oil spreads as a thin layer on the water surface. Currents, waves and wind are the main causes of oil slick transport. The...
متن کاملArtificial Neural Network Modeling for the Management of Oil Slick Transport in the Marine Environments
Due to an increase in demand of petroleum products which are transported by vessels or exported by pipelines, oil spill management becomes a controversial issue in coastal environment safety as well as making serious financial problems. After spilling oil in the water body, oil spreads as a thin layer on the water surface. Currents, waves and wind are the main causes of oil slick transport. The...
متن کاملInverse modeling of gravity field data due to finite vertical cylinder using modular neural network and least-squares standard deviation method
In this paper, modular neural network (MNN) inversion has been applied for the parameters approximation of the gravity anomaly causative target. The trained neural network is used for estimating the amplitude coefficient and depths to the top and bottom of a finite vertical cylinder source. The results of the applied neural network method are compared with the results of the least-squares stand...
متن کاملDevelopment of An Artificial Neural Network Model for Asphalt Pavement Deterioration Using LTPP Data
Deterioration models are important and essential part of any Pavement Management System (PMS). These models are used to predict future pavement situation based on existence condition, parameters causing deterioration and implications of various maintenance and rehabilitation policies on pavement. The majority of these models are based on roughness which is one of the most important indices in p...
متن کاملA generalized ABFT technique using a fault tolerant neural network
In this paper we first show that standard BP algorithm cannot yeild to a uniform information distribution over the neural network architecture. A measure of sensitivity is defined to evaluate fault tolerance of neural network and then we show that the sensitivity of a link is closely related to the amount of information passes through it. Based on this assumption, we prove that the distribu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004